

Controls on Subtropical Low Cloud as Diagnosed from AIRS, MODIS, and ECMWF-Interim Reanalysis

Casey Wall University of Washington Dept. of Atmospheric Sciences

+ Outline

- Goal: Estimate subtropical SW cloud feedback from observations and natural variability in present climate
- Motivation
- Estimates of low cloud fraction change with warming
- Compare with GCMs, LES, and other observational studies
- This work was done by Daniel McCoy, Ryan Eastman and Dennis Hartmann

Motivation: SW Cloud Feedback Leading Uncertainty in GCMs

Goals of this Study

■ Research Goals:

- Estimate the dependence of Low Cloud Fraction (LCF) on large scale meteorological variables based on natural variability in the present climate
- Use these relationships to estimate LCF changes for a 1K SST warming

Goals of this Study

■ Research Goals:

- Estimate the dependence of Low Cloud Fraction (LCF) on large scale meteorological variables based on natural variability in the present climate
- Use these relationships to estimate LCF changes for a 1K SST warming

■ Caveats:

- changes in GHGs or aerosols not considered
- Relationships may be correlative, not causative

Mechanisms of LCF change

SST RHFT U10m

Inversion strength

EIS

FT warms more than SST

Stronger inversion reduces entrainment. Sc top and base lower. Sc thickens.

Thermodynamic

warmer SST or drier RH

Larger surface – FT moisture difference allows thinner cloud to sustain same entrainment.
Sc thins.

Bretherton, submitted

Mechanisms of LCF change

$$LCF = a_1w550 + a_2EIS + a_3SST + a_4RHFT + a_5U10m$$

Stronger inversion reduces entrainment. Sc top and base lower. Sc thickens.

or drier RH

moisture difference allows thinner cloud to sustain same entrainment.
Sc thins.

Bretherton, submitted

Data: MODIS, AIRS, ERA-Int.

- **2002-2014**
- Timescale: 8-day mean, 1-day/instantaneous
- MODIS
 - 8-day mean: collection 6, Random overlap assumption
 - 1-day/instantaneous: collection 5.1, filter for scenes with no mid or high cloud
- AIRS
 - 8-day mean EIS and RHFT
- ECMWF ERA-Interim
 - 4xdaily data interpolated to local Aqua overpass time
- Composite by regime, season

Results: Multiple Linear Regression

Results: Multiple Linear Regression

+ Quality of Regression

Dots denote correlation significant at 95% confidence

• Regression explains ~50% variance of observed LCF

Observational Estimates Resemble Models with large CF decrease

$\Delta\,\text{SST}$ most important large scale predictor for $\Delta\,\text{LCF}$

Lat

Comparison with LES studies

■ LES studies predict that \triangle SST of leading order importance causing \triangle LCF, but other predictors also important

Summary

- Lower LCF associated with
 - Warmer SST (+ SST)
 - Weaker Inversion (- EIS)
 - Drier Free Troposphere (- RHFT)
 - Stronger large scale subsidence (+ w550)
 - Weaker near-surface wind (- U10m)
- Warming estimate: LCF decreases by ~2-3% K⁻¹
- Observational estimates resemble GCMs with relatively large CF decrease with warming
- Sign of relationships consistent with previous observational studies (e.g. Myers and Norris, 2014, Myers and Norris, 2013) and LES studies (e.g. Bretherton et al., 2014, Blossey et al., 2013)

*Extra Slides

+ Data

- 8 day-random overlap assumption, 1 day-filtered for scenes with not high cloud
- Low clouds: CTP>680 hPa

Large Scale Predictors

- EIS-stronger inversion traps moisture in PBL, enhanced cloud fraction
- Free Tropospheric RH-drier free troposphere enhances entrainment drying, reduced cloud fraction
- Large Scale Subsidence-weaker subsidence, higher inversion height, enhanced cloud fraction
- SST-expect negative correlation with LCC, possibly because of the enhanced liquid flux mechanism
- 10m Wind Speed-stronger wind stress enhances evaporation, enhanced cloud fraction
- Multiple Linear Regression:

$$LCC = a_1 EIS + a_2 w550 + a_3 U10m + a_4 SST + a_5 RHFT$$

EIS/U10m Explain Large Amount of Variance

Composite by regime, season

Large Scale Predictors

- EIS
- Free Tropospheric RH
- Large Scale Subsidence
- SST
- 10m Wind Speed

■ Multiple Linear Regression:

$$LCC = a_1 EIS + a_2 w550 + a_3 U10m + a_4 SST + a_5 RHFT$$

Comparison with Previous Observational Studies

■ Sign of regression coefficients consistent with previous observational studies (e.g. Myers and Norris, 2013, 2014)

Cloud Fraction Changes Dominate in Subtropics

Quality of Regression

- Multiple Linear Regression reproduces ~44% of variance over 40° S-40° N
- Generally higher correlations in the 1-day/instantaneous data set than the 8-day mean data set
- Negative correlations in Canarian and Californian stratocumulus regions

+ Results

- Find that Low Cloud Fraction increases with
 - Weaker large scale subsidence
 - Larger Free Tropospheric RH
 - Larger near-surface wind speed
 - Larger EIS
- Climate change estimate: decreased Low Cloud Fraction throughout 40°N-40°S with SST+1K

LES: Stratocumulus

LES: Cumulus under Sc

Scaled by CMIP3 Composite Changes

LES: Trade Cumulus

Scaled by CMIP3 Composite Changes

